dlt.common.libs.pyiceberg
merge_iceberg_table
def merge_iceberg_table(table: IcebergTable, data: pa.Table,
schema: TTableSchema, load_table_name: str) -> None
Merges in-memory Arrow data into on-disk Iceberg table.
get_iceberg_tables
def get_iceberg_tables(
pipeline: SupportsPipeline,
*tables: str,
schema_name: Optional[str] = None,
include_dlt_tables: bool = False) -> Dict[str, IcebergTable]
Returns Iceberg tables in pipeline.default_schema (default)
or schema_name
as pyiceberg.Table
objects.
Returned object is a dictionary with table names as keys and Tables
objects as values.
Optionally filters dictionary by table names specified as *tables*
.
Raises ValueError if table name specified as *tables
is not found. You may try to switch to other
schemas via schema_name
argument.